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parameter associated with the transition surface 

attached to the airfoil's leading edge 

a arbitrary constant 

c velocity of sound 

c airfoil chord r 

C pressure coefficient pressure 

(V2JPV2 

d distance from airfoil leading edge to axis of pitch 

f arbitrary function associated with the equation of 

the airfoil surface* 

F right hand side of eq.  (11) 

Ki» 8?> go functions associated with the form of the first 

order potential function 

tu, hp,  .... hz functions associated with the form of the second 

order potential function 

i, k unit -vectors 

I ,  I, , I2      , functions associated with the form of F 

I a distance small  compared to unity 

M Mach number 

q rate of pitch 

R )/(x-02 V(7-^))2 -P2(:-02 

s a function associated with the airfoil surface 

S surface of integration (see eq. (12)) 

t, t' time 



I 
t, • t - (x-£) M • R 

t2 - t - (x-S) M . R 

P?C^   To 
v velocity vector 

T volume of integration (see eq. (12)) 

V free stream velocity 

*'» 7*» *' rectangular coordinates fixed in space 

x, y, t rectangular coordinates attached to airfoil 

a angle of attack 

a marl mum angle of attack of an oscillating airfoil 

a acceleration 

^ - \jM2 - 1 

Y adiabatic exponent 

6 a *•*n distance ( see fig. U) 

*• thickness parameter 

t ~   > rectangular coordinates 

0., 0. auxilary functions used in finding the second order 

potential function 

p density 

a parameter associated with the transition surface 

attached to the airfoil's leading edge 

0 first order potential function 

0' potential function (see eq. (A-U)) 

$ second order potential function 
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second order perturbation potential function 

frequency of oscillation 

normal force coefficient 

moment coefficient 

\^/d [a cr / (2V)}] t 
a 

[dC«^{icr/(2V)}]i 

normal force 
(l/2)p V2 Cj 

moment 

(l/2)p V2 cf 
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THE EFFECT OF THICKNESS OH AIRFOILS WITH CONSTANT VERTIC/X 
ACCELERATION AT SUPERSONIC SPEEPS 

ABSTRACT 

The effects of thickness on the Lift and pitching-moment of two 
dimensional airfoils at supersonic speeds with constant vertical 
acceleration are investigated.    The airfoils considered have arbitrary 
symmetrical cross sections, and the flow is supersonic everywhere. 

The analysis is based on a second orcer theory «<wMai» to the 
second order theory introduced by Busemann and extended by Tan Dyke. 
The lifting pressure due to a constant vertical acceleration is found, 
and this is used to calculate, the lift coefficient, CT   , and the moment 

Li 
coefficient, C_ , due to a constant vertical acceleration, 

a 

• The airfoil:s second order contribution to the damping of longitudi- 
nal oscillations in aircraft is considered and its relation to the 
damping of oscillating airfoil* is investigated. • 



K 
INTRODUCTION 

The development of the linearized theory of supersonic flow has 
permitted a first order evaluation of a number of stability derivatives. 
Second order theories similar to the one introduced by Busemann (ref. 1) 
and extended by Van Dyke (refs. 2 and 3) offer possibilities of obtain- 
ing second order evaluations of certain stability derivatives, such as 
the lift, C_ , and the moment, C  , due to a constant vertical accelera- 

Lo "a 

tion. Examples of the use of second order theories to evaluate stability 
derivatives are found in refs. (U) and (5). 

Recently two papers have appeared (refs. (6) and (7)) dealing with 
two dimensional oscillating airfoils. The flow over oscillating airfoils 
is of great importance in flutter calculations. For stability studies, 
however, it is more convenient to knew the flow a *r airfoils with a 
constant vertical acceleration and a constant rate of pitch. 

In this paper a second order theory is developed for two dimensional 
airfoils with constant vertical acceleration at supersonic speeds. 
From this theory the lifting pressure due to constant vertical accelera- 
tion is evaluated. The expression for the lifting pressure enables the 
stability derivatives C.  and C  to be calculated. The airfoils con- 

a     a 

3idered herein have arbitrary symrietrical cross sections; however, the 
analysis can easily be extended to include airfoils with unsynmetrical 
cross sections. 

The flow around an accelerating airfoil is of an unsteady nature 
and this necessitates the use of time dependent partial differential 
equations. The differential equation, studied here Is not the time 
dependent equation commonly used, since the coordinate axes employed 
in the analysis are attached to the airfoil. 

ANALYSE: 

Introduction? Recent work by Milton D. Van Dyke (refs. 2 and 3) 
indicates that seOond order s' ^utions of the partial differential 
equation of steady supersonic flow can be obtained by iterative methods. 
In the present paper it will be assumed that iterative methods can also 
be used to obtain second order solutions of the differential equation 
for unsteady supersonic flow. This assumption was *«de in ref. (6) 
in treating oscillating airfoils. 

In addition it will be assumed that the characteristics are the 
same for the first and second order solutions* This assumption does 
not appear unreasonable since for steady plane fl-yw the second order 
solution (ref. (2)) found by an iterative method yields the correct 
second order pressure of the Busemann second order theory. 



The Partial Differential Equation:    The partial differential equation 
for the second order potential flow around an ai_rfoil is  (from ref.   (U)) 

-B2£>   ,   , •*  ,   .   • -S-6 • K * - M2-, (Y-1)($   • -$    H<2>       •«        ) F *x'x-     sVz'        V    * x't 2      t't VT    MS*x'     V*t»M xx'   *z'z,; 
C '- 

X        XX Z     '   X   2- V'X       -X   t      +\>?Z'    ^Z't   j (1) 

The perturbation potential   function, 4s «  has been normalized through 
division by the free stream velocity      Also from ref    (u)  the pressure 
relation is 

cp - - 2 £>x. *$t /v)    *2     • p24x
2 * ^?x, $tvv • M2^2:/^ (2) 

These two equations are associated with axes fixed in space.    For 
the problem considered here it is convenient to express the differ- 
ential equation in terms of a new set of axes fixed to the airfcil. 
The relations between the two  sets of axes are (see fig.  1) 

x*x 

z . 2   *   «v 'L>2 
2     2 --2  (3) 

For the axes attached to the airfoil eqs.   (l)  and (2) become 

'*'*«+*,«   -tZM*$xt/V>-(gtt*
2)  ^ 2M*(at§xx • 

(at$2t/v) • ! i§z/(2V)] • ! (r~i)/2 _($x *5t A) <$„•$„) • 

* §    •£   $     *fe   5—/v^ •/*   $    Jv\\ (U) x ^xx    *z *xz    ,vx *xt    y    v-z   *    zr    )*• NHy 

j 

("»*t*y) 

Eqs,   (U)  and (5) will be used in the analysis of accelerating airfoil3. 

Solution By Iteration;    On the assumption that eq.  (U) can be 
solved by an iterative procedure the initial step will be finding the 
first order solution.,    The  first order partial differential equation, 
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obtained by neglecting the second order terms in eq~ (h), is 

- P2 8  • 0   • (2M? 0 ./V)  (0..A2) - 0 (6) 
XX    ZZ XX TT 

The  solution to eq*   (6)   is taken as the first approximation to the 
solution of eq.   (U)      We shall assume  that the  second approximation 
can be found by substituting the first order solution into the right 
side of eq.   (U)  and solving the resulting non-homogeneouj equation, 
which from eqs.  (U) and (6),  is 

~^xx*^zz    t^xt^     Vtt/g2 -  *?{* *xz *(At *zt/V)* 

[a 0 /(2V)"| - \(r 0/2- 1.0, • 9r/V)(9     • 0„) * 0J)   • (7) 

*x "xx * <V*t'V)  * f*z °zt^} 

The solution of eq    (7) will be referred to as  che second order solution. 

Examination of Form of Potential Function:    It is helpful to in- 
vest lglit^^h^^ype-oT~sTTuTTonobtained^fromeq.  (7)      The first order 
solution will be cf tne  form 0  * a g, (x  i)  * a g (x.z,t)  •«g3(x>s)   •, 
where? is a thickness parameter and lihere o.  o    and t are small compared 
tc unaty.     It  follows  fro^ the above expression and eq    (7)  that the 
second order solution wil^ be of the form 

"V - a h,(x tl * aa h_(x i t) • a" hJx z t) • «(h,(x z) • 

a<hAx 2 t) -*2 h6(x z) 

This paper is concerned only with the lifting pressure and Its 

integrated effects.     The terms a    h-j(x.z),  a ah2(x z,t)v  and a h,(x,z, t) 

contribute nothing to  the lifting pressure       This can be seen from the 
following argument      The  thi.rkness parameter, * .  is not present, 
therefore,   the airfoils can be ronsidered to have zero thickness when 
these terms alone are  treated..     If the potential cf the flow on the 
upper surface of a flat piaie  is expressed as 

$ (a.a) --  og1  * dg   - eTh,   * aab. • a h, 

the potential en the  lower   surface  is given by 

$ ( o • -a) •-      a g,      a g_, * a    h,  • oah    • a   h 

The potential difference is 

A$ •  2ogT  • 2og2 



Since for the flat plate  the pressure d'fference between the upper and 
lower surfaces can be  found directly  from the potential difference,   the 

terms a    h., a a 1.   and a    h^ do not affect the lifting pressure. 

The  terms on the  right side of c-q.   r7)  which are multiplied by 
2      • • 2 /   \ 2 a , aa,  and a    can be neglected;   for  «q.   (.7;  is  linear,  and o    h-.oah-, 

p 
and a h, do not contribute to the lifting pressure.  The terms 

2 » 
a<h. and t      h^ are independent of a (the acceleration parameter), 

and hence they also contribute nothing to the pressure due to 
» 

acceleration 

The remaining term a <" r. 'x  i  i) will be found by use of eq, (7), 
2       ?      2 

neglecting all expressions mio*vir.g a  a •  ' , a and aa 

A farther consideration of the frrm of The solution indicates 
that the second order lifting pressure is linear in the thickness 
parameter- Tnis can be established by considering a first order 
solution of the form 

0 * a g^x z) • ag.(x z  t) ''^i/* *) • "" -c  gc
!* 2) 

Then the second crder Lifting pressure will be of the fcra 

I (x t) • a<r_     I, 
c        - 

t) a r , I. (x t) * 
p   c i ' i    / 

This equation is linear   in <.   anl \..   thus the  lifting pressure for 

various known thickness distriouticns  :ari be added tc obtain the 
lifting pressure  for  other  thickness  distributions. 

This  linearity has no  spe^ia.  value   fc»   the   two dimensional 
airfoil-  sire we shall determine   'he  solution for an arbitrary thickness 
distribution-     It can be shown    similarly    that linearity of lifting 
pressure with thickness cbj*.ri butter   he Ids   ?cr   three dimensional air 
foils  also,   and  for   this case  it   shcu.d prcve  quite useful. 

Bcunda-y Cond: *icr.g.       Physica.   considerations require  that  the 
flew be tangent   to the  surface cf the  airfoil     and ti>at  all   velocity 
perturbations  vanish upstream, cf tr.e airfoil.    These boundary cor.- 
ditions may be  expressed mathematically  as 

and 

0  <x    y    z    t) - C 

~ (x    y    z    t)   •  0 

v   7s • 0 

ipstream cf the airfoil. 

•    The terms a «.' h.    <c i,     and a    h    are assoiat.ed with steady super- 

sonic   flew and c .r. be  found by   »he  Busemann second order  t.heory„ 



where s(x<   a)  • 0  13 the equation cf The  surface of the airfo-.l 

The equation of the surface of the airfoil may a.!so be expressed 
as z - < f(x) 

Thus 

V     • - i£f'  • It s 

Since the velocity vector    v,   can bp written as 

v * 1  (1 * 0    * x- )  *• / (<3    * •'    • at) 

it follcws that the boundary condition on the airfoil surface is 

(1*0    • •.; ) *. f    * 0    " .     • or  - 0 xx z       z 

The cocrdinat 3 axes v\*i be chcser   JO '.hit ti.e  nrfoil  lies 
approximately in the   \ - 0 plane..     The  boundary conditions  for the 
first order solution are Q(x    y    2)   - C upstream of the arfoii    and 

0    ; • o     at *«. f (8) 
7    r • 0 

Since only the OC term :s oeing calculated a wi 11 be set equal to 
zero. Similarly th* boundary ronditicns for the second order solution 
are \p  - 0 upstream of the airfoil and 

(9) -'. 0       f £ f $     I 
2 ! 1 •  0    * z - 0 : z •- 0 

For the airfoils considered in this paper  the  first order  velocity 
components are disccntinucus across  the Macn sneer   flora the leadirg 
edge.    The effect of these dis-cntmuities on  the second order solution 
will be determined by  assuming that  a  small   transition surface  is 
attached to  the leading edge..    Tnio sriall surface  is so shaped that the 
discontinuities in the  velocity components are removed.    The effect of 
the discontinuities will be evaluated by a   LmutUig process in which 
the width of the attached surface approaches zeio.    A surface which 
will remove tne first crder  velocity discontinuities  in the  flow over 
the upper surface :«; 

1  •  •   (a x2t/2)  •  (x2 a/2) 

where the surface extends from x  • 0 to x«  /,  and a /  •  o, s. / » c 

Evaluating the  seror.d crder potential  funct.or. associated with the 
flow over  the  small   transition surface  introduced above will  lead to 
the determination cf the second order   loading edge disccntinuities 
The  first crder soiutior,  fcr the  f^cw c*-<er the transition surface Is 

<f - ! (x~0i)V(2pV)j:    <o JT(x +2flz) w /(3P )  • oVl • 7a 1 (10) 



^ 

The second order solution can be found by substituting eq.  (10) 
into eq.  (7) and solving the re nxlting non-homogeneous equation; 
however,  in thi3 case It is easier to use a different approach.    In 
appendix A it is shown that the solution for planar problems to the 
three dimensional non-homogeneous equation 

-P2 Vxx * Y yy * ^zz  '  (2M2yxtA)- (Vtt/
C?>  -  F(x>7ir,t) (ll) 

can be written as 

Y(x,y,z,t)  -•!—     /|jP
v     fi    [f(tl)  • F(t2)"| dv - (12) 

o 

i   /;   i font.*), o,v./°fl*r^(4wo,t2>/*ft» 
where v Is the volume inclosed by the forward Kach cone from the point 

(x, y, z), and the surface S is the area of the transition surface in 

the forward Mach cone from the point (x y, z). 

When eq. (12) is applied to an arbitrary point located on the 
Mach surface from the trailing edge of the transition surface, the 
result can be expressed as 

V(x,«.t)  -rf dC   I d£ .   _ , 
0 PS 

 kh*-Z)2 -P2(-C>*) /P 

2T d£ 

14 4»*fc,<wO/*]}^ 
Since F,  [dvfj(£, 0, 0,  t^) /d^J, and[aY(£, 0, 0.  t2)/dC]are 
independent of Y) ,  the preceding equation can be reduced to 

v(x,z,t) - \   r2    dC fPr    [«& C,V • F(t<,t2)] d^-i3) 

2  f [^(^o.o.^/a^fdrto^o^amd^ 2 

12 
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The integrand of the first integral in eq. (13) can be written 
as 

J2(CC> o • (£- PO3 J3< (4- P{)2 J2
(£>C> tJ *(^- P^>3 J

3^»5»t} 

are 
where JQ, Jp «L ^and. J.. .continuous functions and are not zero at£" p£« 

Since the 4 in the integrands of eq. (13) varies over a verj  small 
range, the functions J , J,, J? and J- can be considered as constants 

with respect to integration in the ^ direction. Therefore s can be 
replaced by pC in these integrands, thus permitting integration to be 
perforaed with respect to ^ .  Eq. (13) becomes 

ilp/ J2<ef»C. « d{ • Jp/* J
3
(K. ? . *) dr    (u) 

The value of the second order potential function on the downstream 
side of the leading edge Mach sheet above the airfoil can be found by 
taking the limit of eq.   (lb) a3 / approaches zero and as a and a 
approach infinity so that 

lira    b( • & 

• QO 

and 

lim    ft/ • £ 

a -** °o 

Thus the discontinuity in the second order potential function is given 
by 

*^ a-*><» 

The integrals containing J~ and J, are zero in the limit since J~ and J, 

13 



O 0 0 
are linear functions of a , da, a > a , and da. 

From eqs.  (ID) and (7) the functions J    and J,  are (neglecting 
o     # o o ox 

the b , do, a    and d    terms) 

Jo - lid M2 a   [ -t • M(x-p £ ) / (p2c)] 

Jx - - kiyDtfr aa   [vt-   HV?
2
]     /fvp2) 

Substituting the preceding expression into eq.  (1$) and performing 
the indicated operations yield 

M/l - d*(M2/p2) [-t • K x/(2p2c)l  p 
r x -0s U J 

z • 

a e[(y*l)/2fl^/flh)  [t-/V02c)] p* (16) 
Expression (16) is the value of the discontinuity in the second order 
potential function across the leading edge Nach sheet above the airfoil. 

Solution of the Partial Differential Equation? The part of the 
second order potential function which contributes to the lifting 
pressure due to a constant acceleration will now be determined. Since 
the method of solution is essentially the same for both the upper and 
lower surfaces, only the flow over the upper surface will be considered 
in detail, 

The first order solution is 
.2_2   „2 

(17) 0.J.   [.jCjd    •£    ,2-Vt(x-pz)]    -€llp2 

It follows from eqs.   (7) and (17) that the second order potential 
function must satisfy the non-homogeneous' equation 

-P*u,       *u,      - a£ 1 H2 d€  /l • YMfd-p2) 
c ^. p 

[(t«2 - M2 • 2)/p2 ] Vtf" • (M2/pU)(yl)(x*p3 z)    £»}   (18) 
2 • 2 • 2 where the a    , a a, a «. , £  , and a      terms have been neglected. 

The potential function \f will be divided into two parts ",  and 62 

such that 0.  satisfies the non-homogeneous equation and 8. satisfies 
the homogeneous equation. 

1U 



to be 
By inspection a solution of the non-homogeneous equation is found 

8    - " «1?L    (M2 y - M2 • 2)  ztf«  - i^X    [yi^ - 2)*MU - 3*1 «f - 
1 2p3 UV p5    L J 

&L \?h - Y (M^-l)! Z2 f •  • ^    (Y*D »f- (19) 
2V p- 

The boundary conditions are given by eqs.   (9)  and (16).    From eq. 
(19) and the boundary conditions it follows that 

x»Bz 

and 
ae2 

oT" - «<     I - (MU
Y-Mli*2)Vtf  - £, (-2M2Y • UpU - 2) f* 

z-0      2VP-5  L 2p* 

(M2/P2)(M2Y-M2*2) xfi"j 

By inspection 

62 -    S-g- /"(M^ - M1* • 2)Vtf •(tf/p2)!*2 (Y-1)P2*-(M2Y-M2* 2)x] f 
2Vp 

.2 
-^   (- 2MU

Y • 6M14 - 1DM2 • 2' 
>x - pz 

f(u) duj- (20) 

Thu3,  from eqs.  (19) and (20),  the part of the second order 
potential function which contributes to the lifting pressure is 

Y -   5-1,  {M2(K2Y - M2 • 2) p z Vtf«  - Y M1* p2 *2 f•  -(MU/p2)(r*l,)xpf,2 + 
2VpU L 

(V*Y - M1* • 2)  Vtf -(M2/P2^MS - M1* • M2 • l) pz • ('M2
Y-M2*2) x"j f - 

(V/p2)^ Y " 3^ • .5M2 - l) f " ^    f(u) du j (21) 

as 
Lifting Pressure;    The lifting pressure distribution can be expressed 

AC    - - C • C    1 , p p j upper p I lover 
surface surface 

15 



From eqs. (2) and (21) it follows that for symmetric.1 airfoils the 
lifting pressure distribution at t • 0 is 

Ac    - ZJg   •   itlJr   IVY - M2 • 2) x f'(x) • (2M*Y -3M2*5)f(x)l 
P    v a? v p6    L J 

9 (22) 

Fig. 2 presents the lifting pressure distribution at t"0 on a 
ten percent thick wedge for various Mach numbers, and fig. 3 presents 
the lifting pressure distribution at t • 0 on a five percent thick 
airfoil with a parabolic cross section for various Mach numbers. 

The Force and Moment: The effect of thickness on the lift, C, > 

and the moment C , due to a constant vertical acceleration can be Bd 
found by use of eq. (22). The stability derivatives C^# and C 

d     d 
can be expressed as 

KL        .  1     f
Cr CL -  ^L 

dC 1    f r 
C   - —5        -  . 3      (x-d)^C dx 

(TTj'i —0 \W)   ° 

From the preceding relations and eq. (22) the C. and the 
Ld 

C      of an airfoil are found to be 
md 

\" V 
and 

«     P     (. r       <jp 

<d/crHMV2M2'3) fr iJjL d, - p2 rCr aua, tal] 
'o        cr o c 3        JJ (2U) 
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Fig. U presents the variation of the C.  of a wedge airfoil 
Ld 

with Hach number for various thicknesses; and fig. 5 presents the 
variation of the CT  of an airfoil of parabolic cross section with La 
Mach number for zero and 7.5 percent thicknesses.  Fig. 6 presents 
the variation of the C  of a wedge airfoil with Mach number for 

md 
various thicknesses, and fig. 7 presents the variation of the C ma 
of an airfoil of parabolic cross section with Mach number for 
various thicknesses. 

The sum    of the stability derivatives C      and the damping in 
d 

pitch, C    ,  largely determines the damping of the l^-igitudinal 

oscillations in aircraft.    The second order damping in pitch for 
airfoils with synnetrical thickness distributijns is given by 
eq.   (23) of ref.  (^).    The sum of this equation and eq.   (2h) can 
be written as 

— c " 
18M2 - oj fr      Ii|i dx • 2(MiVMU-l#2*U) r°r      xf(x)       |       (25) 

r ^ 

Fig. 8 presents the variation of the Cn • CL of a wedge airfoil 
a q 

with Mach number for various thicknesse0 for the case where the axis 
of pitch is located at the mid-chord poinx,. Fig. 9 presents the 
variation of the C  • C  of an airfoil with a parabolic cross section re.   m d    q 
with Mach number for various thicknesses for the case where the axis of 
pitch is located at the raidchord point. These two figures indicate that 
the effect of thickness has a destabilizing effect for a wedge airfoil 
and has a stabilizing effect for an airfoil with parabolic cross section. 

Fig. 10 presents the regions of possible instability for a ten 
percent wedge and a five percent parabolic arc airfoil. The curves 
are lines of zero damping found by placing C  • C  equal to zero. 

d   q 
This figure indicates that the effect of thickness increases the region 
of instability for the wedge airfoil and shifts the region to a lower 

19 
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1 
value of d/c for the parabolic airfoil. 

The relation between C    • C      and the darning of a slowly oscil- 
B&     mq 

lating airfoil is investigated in appendix B.    It is shown that to 
the second order in amplitude and thickness, and to the first order in 
frequency,  the damping of a slowly oscillating airfoil is directly pro- 
portional to the sum C      • C 

•ft   mq 

CONCLUDING REMARKS 

The airfoils considered in this paper have symmetrical thickness 
distributions.    But since the flow over the upper and lower surfaces 
of the airfoils treated are independent of each other,  the aerodynamic 
properties due to constant vertical acceleration's of airfoils with 
unsymraetrical thickness distributions can easily be determined from 
the results obtained here. 

The limitations of the Busemann second order theory have been 
investigated (see ref.  8).    Since the theory contained in the present 
paper is closely associated with the Busemann second order theory 
it seems likely that the results presented herein have similar 
limitations. 

J6HN C. MARTIN 

W4THAN GERBER 
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APPENDIX A 

In ref. (9) several expressions are given for the scalar potential 
function of the three dimensional time dependent linearized partial 
differential equation of supersonic flow. In this appendix the results 
of ref. (9) are extended to include eq. (11). The notation of ref. (9) 
will be used in this appendix. 

Eq. (17) of ref. (9) can be written as 

'#[* *i 30. »a0,      # 

(A-l) 
fflTfo2d      2V    *1 *        ^ 2V        ^   -^      ^2M 

a^dt2 
c at. 7JH dv 

where the closed surface of the integral of the left side incloses the 
volume of the integral on the right side. 

The potential function, 0,  is required to satisfy eq.  (ll).    In this 
case eq.  (A-l) reduces to 

2) 

?JIfVl •'!>/»]   d' 
Eq.  (A-2) will be applied to a volume (denoted by v )  inclosed in 

the forward Mach cone from the point (x,y,z)   (see fig.   (ll)).    This 
volume is bounded by the forward Mach cone, an arbitrary surface, S^ 

inclosed in the forward Ma:h cone,  and a surface given by^» x - 6, 
where 6 is small. 

The finite part of the surface integral is zero since on the 
Mach cone 

*l-*2 

The surface integral over the area 

£ - x -6 
reduces to a time independent problem in the limit as 6 approaches zero. 
Thus this surface integral in the limit becomes 

lim 

8+0 
'is rh 

- 0 IvCi")] da- - 2n 0 (x,y,z,t) 
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The details of the above Integration may be found In ref. (10) or 
ref. (11). 

It follows from the preceding paragraph and eq. (A-2) that trs 
potential function at the point (x,y,s) can be expressed as 

*<x,y,.,t) - - £. JJJ     [h • F2)/h] dv • ^- jT [4- 7 0 - 
'*o 

(A-3) 

For planar problems In which the pqlnt (x,y,t) lies above the z - 0 
plane and the disturbing surface lies in the z - 0 plane eq. (A-3) 
can be reduced to 

0(x.y.«,t) - - £JjQtF, • VA] * - Jr   Nifc - t'O $- <«• 

where the surface S, is the z - 0 plane. 

The potential function 0'  is as 7et undefined.    The potential 
function ?' will be defined so that 

0,<x»7»-*o»t) - f*(x,y,ao,t) 

In this case eq* (A-U) reduces to 

e wi 
1 (A-5) 
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APPENDIX    B 

The Relation Between the C        Plus the C      and the Damping of 
m. m 
& q 

Oscillating Airfoils 

The damping of oscillating airfoils calculated on the basis of the 
linearized theory can easily be shown to be directly proportional to 
the sum C  • C  calculated by the linearized theory. The question 

"&   mq 
arises — does this hold true for second order calculations? This 
question will be answered by investigating the partial differential 
equations and the boundary conditions for the three types of motions 
involved. 

Eq. (l) can be used in the analysis of oscillating airfoils; how- 
ever, for comparison purposes it is more convenient to express the 
equation in terms of axes fixed to the airfoil. The relations between 
the two sets of axes are (see fig. 12) 

iart   , , i»t r» •« 4 e    - z' sin a. e 
m m x • x' cos o e 

z - x« sin <L, e1** • z- cos a e1** (B-l) 

For the axes attached tr the airfoil eq. (1) becomes (to the 
second order) 

-P2 *„ .#„ - (««/»>** -(v.*) ftt -v
fct [^(•*A> 

(im §„/»)•(*» *§„/') • (i»»,A)]- 

(2iM/c2)(z * rt - X * ,t) • (»V=2_)(. $   x - **,)]•      (B-2) 

MJ [(r-i)($x . f t /T)^ .#^ . tf^ , 2$t ^^ . 

For slowly oscillating airfoils the time variation can be ex- 
panded in the form 

e imt  - I • i*t - »2t2/2 • ... 
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xz 

The result of substituting this relation into eq.  (B -2) and retaining 
only the terms up to first power of co yields- 

-P2 $xx * $*z     (2«* *zt/*)~(*tt'°2)m % »2(*w ^zt/V)* 

am iarfM2 [t §xz • (t$zt/V;-   fz ^XJ/V)* (x 5XZA) •        (B-3) 

f« #»**/*)• fa*, $zt/v;) 

The boundary condition on the airfoil surface can be expressed as 

v . Vs * o 

In this case 

T - i (i t 0x) (~ € txy i \ i^s • ^.•fl^"Stat) 

Therefore,  on the aifrfoil s upper surface 

*z • z-0 " " cm " [°m •<x • Vt)/Vj*€fx (B-U) 

and 

^Z   1.-0    "0x|   ^   Cf    -Cf 0      !      n ,^ z«0        x *zz ' 2-0 (B~$) 

The discontinuity in W across the leading edge Mach sheet need not 
be evaluated since the differential equation and the boundary conditions 
on the airfoil surface are sufficient to determine its value. 

The first order boundary condition on the airfoil s upper surface 
for a constant vertical acceleration and a steady pitching ir (from 
eq. (8), and eq. (8) of ref. (5)) 

0Z|   • -a - [at • (qx/Vj* €^ (B-6) 

Comparing eq. (B-k)  and (B-6) it can be seen that if we let 

a - q - a iwj, (B-7) m 

to the first order the oscillating motion can be considered as the sura 
of a constant vertical acceleration a*Vd   a steady pitching motion. 
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The second order boundary condition on the airfoil's upper surface 
for a constant vertical acceleration and a steady pitching is (from eq.(9), 
and eq.  (9)  of ref.  ($)) 

where.0^ denotes the first order solution associated with pitching, 
and 0^ denotes the first order solution associated with a constant 
vertical acceleration.    Comparing eqs.   (B-5) and (B 8) it can be seen 
that the second order boundary condition on the airfoil surface  for a 
slowly oscillating airfoil can be considered as the sum of a constant 
vertical acceleration arid   a steady pitching motion. 

The second order partial differential equation for the combined 
motion of accelerating and pitching can be written as 

vt $xz * **,t) * 2M2
 )b'D/2](§x •*t/v)<*„* *„)• 

*,*„   * §2 *„ ^*x*rt/Vrf*z  *.t /V)| 

where q and a nave been rep]iced by a IU      Eqs    (D-3) and (B-9) 

are not the same;   they agree except for the terms a    2M 5       f 

a    2M2f>   /V , a    ixo 2M2 zf^/V2,  and a    ia> 2M2 x 4./V2. m zt m xv n ZL 
These terras do not contribute  to the part of the second order solution 
which is cf the form o    iu< h(x,y,z,t).    This can be established by 
analyzing the form of the second order solution in the same manner that 
the form of the accelerating solution was analyzed previously in this 
paper.    An analysis of the form of the second order solution for the 
slowly oscillating airfoil will also show that only that part of the 
second order solution which i3 of the form am iw€h(x,y,z,t) will 

contribute to the lifting pressure which is out of phase with the in- 
stantaneous angle of attack,  and hence to the aerodynamic damping of 
the motion.    It follows that to the second order the damping of slowly 
oscillating airfoils is directly proportional to C      • C    . m.        m ft q 
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